

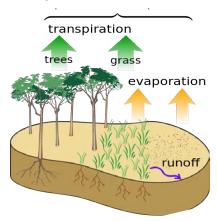
CIRiS: Compact Infrared Radiometer in Space

June 23, 2020

Presenter and PI: David Osterman

Team: A. Amparan, A. Ghandour,

T. Kampe, P. Kerrigan, J. Necas,

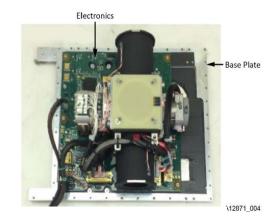

D. Piqueira, G. Reavis, R. Rohrschneider,

M. Veto, R. Warden

CIRiS addresses need for radiometrically calibrated infrared imagery, with short revisit times and high spatial resolution

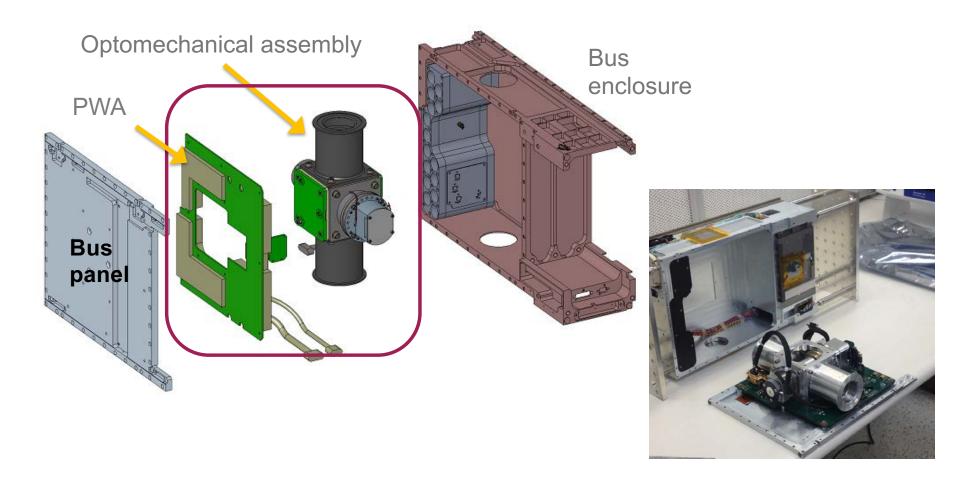
- Especially for <u>daily</u> imagery over <u>the globe</u>, at <u>spatial resolution << 1 km</u>:
- For evapotranspiration measurement (evaporation + transpiration)
 - A key Earth Science variable
 - Data to guide irrigation sufficiency, prediction of sudden drought
- To transfer radiometric calibration between other spaceborne infrared instruments
 - Resolve calibration differences due to instrumental and orbital effects
 - e.g., VIIRS, MODIS, AVHRR

Also daily Land Surface and Sea Surface temperature measurements (LST, SST)


CIRiS is a compact, low size/weight/power instrument suitable for constellations of Cubesats or other spacecraft hosts

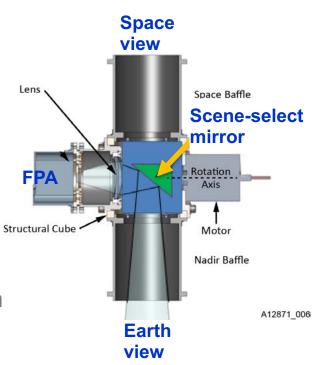
- Compact 20 x 20 x 10 cm³ infrared imaging radiometer has been integrated to a 6U Cubesat
- Launched Dec 5, 2020 on a demonstration mission in LEO

Goals of the mission:

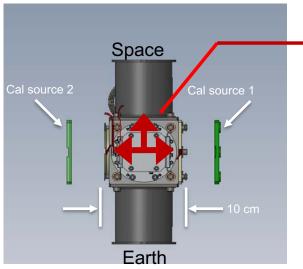

- 1. Demonstrate technologies for high performance in small volume:
 - Uncooled microbolometer focal plane assembly in space
 - Flat-panel carbon nanotube calibration sources
- 2. Optimize calibration sequence for Cubesat operation
- 3. Optimize artifact suppression by algorithm

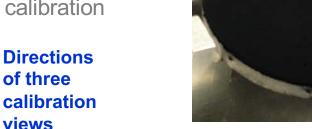
Instrument SWaP	Value
Size	< 20 x 20 x 10 cm ³
Weight	1.8 kg
Instrument power, including heaters (TVAC 10- min avg)	9.5 W

The CIRiS instrument comprises an optomechanical assembly and single electronics board (PWA)



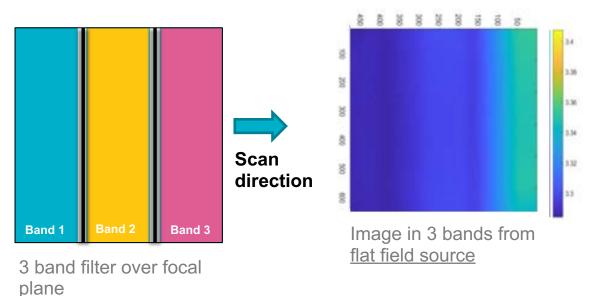
The objective of CIRiS system design is to optimize on-orbit calibration performance

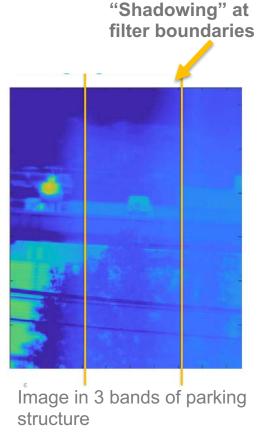

- The CIRiS instrument as a "calibration laboratory in space"
- Three different calibration views on-orbit, via scene-select mirror
 - Two carbon nanotube calibration sources (different temperatures)
 - View to deep space
- Multiple parameters selectable on orbit
 - Calibration sequence, timing, temperatures, others
- Additional features to optimize calibration performance:
- End-to- end calibration
- 2. Multiple temperature controlled zones
- 3. Multiple temperature sensors for background correction


An enabling technology for high calibration performance in a small volume: flat-panel carbon nanotube calibration sources

- Carbon nanotube films on 1/8-in thick flat panel substrates
 - Fit two calibration sources in 10 cm length- difficult with conventional cavity sources
- High measured emissivity in CIRiS bands $\varepsilon > 0.996$
 - Reduces emissivity uncertainty in calibration
 - Reduces stray light reflections during calibration

Two carbon nanotube sources fit within a 10 cm side space

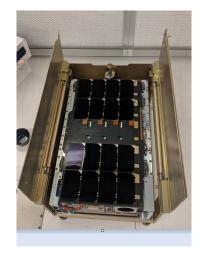

Carbon nanotube film on 1/8 in thick substrate


CIRiS acquires calibrated images in three infrared bands

Ball

- Three bands selected for imagery of Earth's surface temperature
 - Two bands enable correction for atmospheric water absorption
- Parallel images acquired in each band from LEO by pushbroom scanning

Band	FWHM wavelengths Lower, upper			
1	7.40 um, 13.72 um			
2	9.85 um, 11.35 um			
3	11.77 um, 12.60 um			

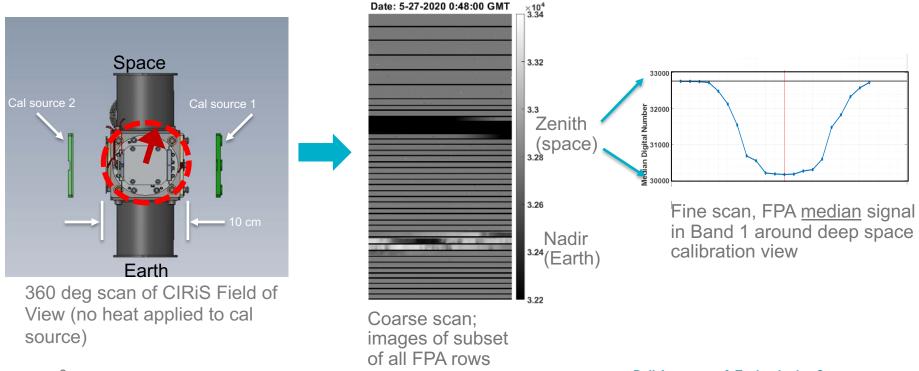


Ball Aerospace & Technologies Corp.

L-CIRiS deployed in Low Earth Orbit, after stay on International Space Station and transfer to higher orbit

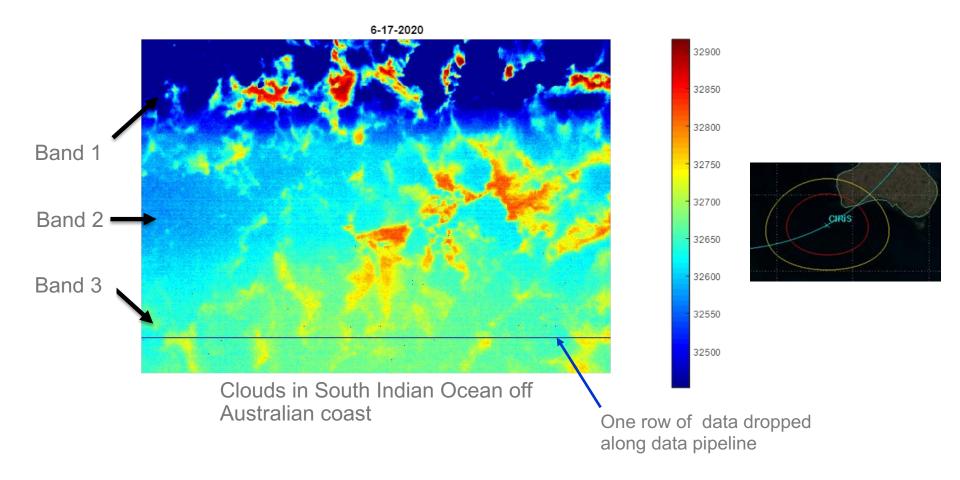
CIRiS/Cubesat bus in dispenser

Launch from Cape Canaveral to ISS on Falcon 9 launch vehicle


Departure from ISS to higher altitude, Cygnus vehicle

- CIRiS deployed in its final orbit on Feb 1, 2020
- Orbit is 52 deg inclination; ~470 km altitude

CIRiS Status on orbit


Ball

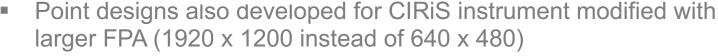
- Exercised subsystems: telemetry, focal plane, scene select mirror
- Scanned through three calibration views; imaged all cal views
- Taken first Earth images through science port
- Working to improve communication efficiency with spacecraft, especially dropped data

First partial and full Earth images acquired

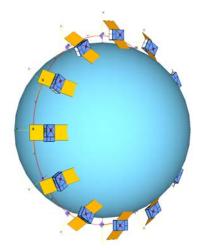
Next Steps

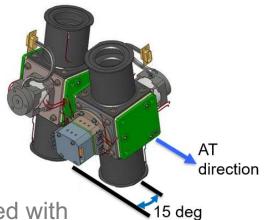
- Complete commissioning of all instrument functions
- Characterize calibration performance
 - Absolute and relative accuracy, repeatablity, others
 - Identify error sources, factors affecting calibration
 - Calibration intercomparison between on-board cal sources
 - Co-add images for improved SNR
- Optimize calibration using characterization results
- Acquire calibrated Earth images
 - Views to vicarious ground sources
 - Characterize performance for applications-evapotranspiration, land and sea surface temperature, cloud radiance, others
 - Trending

Point designs developed for CIRiS constellations to support evapotranspiration, other missions, with daily global revisit times



Assumptions:


- Up to 12 spacecraft in same polar orbital plane
- Two CIRiS instruments per payload for 30 deg field of view
- Pushbroom scanning of Earth


Number of spacecraft	Altitude (km)	Revisit Time (days)		Swath (km)	GSD (m)
3	485		4	254	201
4	460	3		241	191
6	410		2	215	170
8	625			336	259
9	550		1	296	228
10	490		1	263	203
11	440		1	236	182
12	400		1	209	166

Daily global revisit

Daily global revisit times feasible with spatial resolution < 70 m

